

Development Standards & Practices Used
List all standard circuit, hardware, software practices used in this project. List all

the Engineering standards that apply to this project that were considered.

RFC standards were used for the packet subsystems which will handle the

IPV4/IPV6 packets.

IETF IPV6 standards

IPV4 standards

Agile Development with KanBan

Summary of Requirements

Implement support for IPv6

Implement support for Virtual IPs

Refactor codebase to improve readability and maintainability

Refactor codebase to increase portability for various modern unix systems

Update the configuration file format to support the JSON format

Delegate layer 2 (ARP/NDP) communications to operating system

Applicable Courses from Iowa State University Curriculum
List all Iowa State University courses whose contents were applicable to your

project.

CPRE 185, 230, 231, 331, 308, 288, 430/530

EE 285

ComS 227, 228, 309, 327, 352

New Skills/Knowledge acquired that was not taught in courses
List all new skills/knowledge that your team acquired which was not part of your

Iowa State curriculum in order to complete this project.

ESXi Management

Code Review

IPv6 packet structure & networking

Cyber Security challenge creation

Large-scale C/C++ development

Table of Contents
1 Team 5

1.1 TEAM MEMBERS 5

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT 5

(if feasible – tie them to the requirements) 5

1.3 SKILL SETS COVERED BY THE TEAM 5

(for each skill, state which team member(s) cover it) 5

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM 5

1.5 INITIAL PROJECT MANAGEMENT ROLES 5

2 Introduction 5

2.1 PROBLEM STATEMENT 5

2.2 REQUIREMENTS & CONSTRAINTS 5

2.3 ENGINEERING STANDARDS 5

2.4 INTENDED USERS AND USES 6

2 Project Plan 6

2.1 Project Management/Tracking Procedures 6

2.2 Task Decomposition 6

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 6

2.4 Project Timeline/Schedule 6

2.5 Risks And Risk Management/Mitigation 7

2.6 Personnel Effort Requirements 7

2.7 Other Resource Requirements 7

3 Design 8

3.1 Design Context 8

3.1.1 Broader Context 8

3.1.2 User Needs 8

3.1.3 Prior Work/Solutions 8

3.1.4 Technical Complexity 9

3.2 Design Exploration 9

3.2.1 Design Decisions 9

3.2.2 Ideation 9

3.2.3 Decision-Making and Trade-Off 9

3.3 Proposed Design 9

3.3.1 Design Visual and Description 10

3.3.2 Functionality 10

3.3.3 Areas of Concern and Development 10

3.4 Technology Considerations 10

3.5 Design Analysis 10

3.6 Design Plan 10

4 Testing 11

4.1 Unit Testing 11

4.2 Interface Testing 11

4.3 Integration Testing 11

4.4 System Testing 11

4.5 Regression Testing 11

4.6 Acceptance Testing 11

4.7 Security Testing (if applicable) 11

4.8 Results 11

5 Implementation 12

6 Professionalism 12

6.1 Areas of Responsibility 12

6.2 Project Specific Professional Responsibility Areas 12

6.3 Most Applicable Professional Responsibility Area 12

7 Closing Material 12

7.1 Discussion 12

7.2 Conclusion 12

7.3 References 13

7.4 Appendices 13

7.4.1 Team Contract 13

List of figures/tables/symbols/definitions (This should be the similar to the
project plan)

TABLES

Table 1. Gantt chart

Table 2. Individuals Task Breakdown

Table 3. Task Time Breakdown

Figures

Fig 1. Current ISEAGE layout

Fig 2. Refactored Implementation

Fig. 3 Detailed ISEAGE overview

1 Team

1.1 TEAM MEMBER

Jacob Morrow

Jon Schnell

Evan Hellman

Cameron Isbell

Nicholas Krabbenhoft

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT

● Networking
● VMware
● C/C++ programming languages
● Software design/architecture
● Computer Engineering
● Cyber Security Engineering

1.3 SKILL SETS COVERED BY THE TEAM

Cameron:
Skills: Most of my programming experience is in C/C++. I also know Java,
Python, C#, and vhdl. I have some driver programming experience from CPRE
480.

Jon
Skills: networking, network security, linux, python, C, and java programming,
ESXI, virtualization.

Nicholas
Skills: Strong skills in networking, C, Linux, and python. I also have experience
in virtualization and running small lab environments.

Evan
Skills: Strong background in development especially in Agile environments.
Experience programming in C/C++ and a variety of other languages. Well versed
in software development and architecture techniques. Experience working with
Windows and Linux-based machines as well as their network configurations.
Knowledge of computer networking and network security.

Jacob
Skills: C programming, Java programming, very basic python
programming, basic Linux programming

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

The team used an Agile development methodology for project management. More specifically, the
team utilized a KanBan-style board to track and assign work.

1.5 INITIAL PROJECT MANAGEMENT ROLES

Jacob Morrow – Scrum Master

Jon Schnell - Project owner

Evan Hellman - Project Manager

Cameron Isbell- Software Engineer

Nicholas Krabbenhoft- Systems Engineer

2 Introduction

2.1 PROBLEM STATEMENT

What problem is your project trying to solve? Use non-technical jargon as much as possible.

We are creating a new ISEAGE to support IPv6 as well as virtual IP’s and several different
modifications to host a cyber defense competition in the Spring of 2022 for universities in Kosovo.

2.2 REQUIREMENTS & CONSTRAINTS

List all requirements for your project . This includes functional requirements (specification),
resource requirements, qualitative aesthetics requirements, economic/market requirements,
environmental requirements, UI requirements, and any others relevant to your project. When a
requirement is also a quantitative constraint, either separate it into a list of constraints, or annotate
at the end of requirement as “(constraint)”. Other requirements can be a single list or can be
broken out into multiple lists based on the category.

Implement IPV6 support to ISEAGE

- ISEAGE must be able to handle IPv6 as well as it handles IPv4
- Keep hardware requirements roughly the same so all current systems can be upgraded

without requiring new hardware

Design an entry level CDC for students in Kosovo

2.3 ENGINEERING STANDARDS

What Engineering standards are likely to apply to your project? Some standards might be built into
your requirements (Use 802.11 ac wifi standard) and many others might fall out of design. For each
standard listed, also provide a brief justification.

IETF IPV6 is the primary standard as we have to be emulating a full network stack emulating a
network running IPv6.

Standard API’s used by ISEAGE.

2.4 INTENDED USERS AND USES

Who benefits from the results of your project? Who cares that it exists? How will they use it?
Enumerating as many “use cases” as possible also helps you make sure that your requirements are
complete (each use case may give rise to its own set of requirements).

The main users will be researchers and competitors. ISEAGE is used to simulate internet scale
attacks and defense computer situations. This means we will have 2 use cases. For students and
competitions, this will need to be easy to use and configure. They will also require standard attacks
to work well. For researchers, this project will be able to withstand high loads for studying DOS and

DDOS attacks. It also needs to stick to the real life implementations to allow new research to be
developed that is applicable to the regular internet.

2 Project Plan

2.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

Which of agile, waterfall or waterfall+agile project management style are you adopting? Justify it
with respect to the project goals.

Our team will be doing fully-agile development using KanBan. We believe that the agile
development process is fitting for our project because we have many different features that can be
implemented concurrently. It will give our team the flexibility to handle these features as we need to
and also ensure that our project work remains manageable despite load changes with other school
work.

What will your group use to track progress throughout the course of this and the next semester.
This could include Git, Github, Trello, Slack or any other tools helpful in project management.

We will be using agile/scrum because we feel it is most conducive to our production schedule.

We will be using GitLab, Click-Up and Discord to help with project management.

2.2 TASK DECOMPOSITION

In order to solve the problem at hand, it helps to decompose it into multiple tasks and subtasks and
to understand interdependence among tasks. This step might be useful even if you adopt agile
methodology. If you are agile, you can also provide a linear progression of completed requirements
aligned with your sprints for the entire project.

Tasks:

1. Compile
a. Create freeBSD virtual machine(s) as needed to run ISEFlow

i. Create VM
ii. Install all dependencies

b. Compile ISEAGE 1.0 source code and run ISEFlow on the configured VM(s)
c. Familiarize codebase

i. Analyze codebase structure and build process
ii. Analyze codebase deployment process and environment

iii. Gain insights by running ISEFlow and comparing to codebase actual
functionality to the codebase itself

2. Refactor
a. Add detailed comments to each function while understanding how code works
b. Add modularity to codebase

3. Add IPv6 Functionality
a. Add IPv6 functionality for greater flexibility
b. Move virtual IP from ISEAGE to kernel
c. Add easy configuration functionality

4. Kosovo CDC

a. Plan Scenario
i. Plan and document a realistic CDC scenario

ii. Plan and document the scenario’s network
1. Design devices with realistic OSes, network stacks, protocols, and

applications
2. Implement designed devices (OS Images)
3. Carefully document all of the changes to each device

iii. Create scenario document including network diagrams, detailed device
info, user info, and any other important details

b. Implement Vulnerabilities
i. Identify, choose, and document realistic attack types, including IPv6

attacks
ii. Implement chosen vulnerabilities in various devices

iii. Create vulnerable application or configuration
c. Test devices and network

i. Create a test instance of a blue team network
ii. Test functionality of each machine and their applications

iii. Perform a penetration test against the network to confirm vulnerabilities
are functional

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

What are some key milestones in your proposed project? It may be helpful to develop these
milestones for each task and subtask from 2.2. How do you measure progress on a given task? These
metrics, preferably quantifiable, should be developed for each task. The milestones should be stated
in terms of these metrics: Machine learning algorithm XYZ will classify with 80% accuracy; the
pattern recognition logic on FPGA will recognize a pattern every 1 ms (at 1K patterns/sec
throughput). ML accuracy target might go up to 90% from 80%.

In an agile development process, these milestones can be refined with successive iterations/sprints
(perhaps a subset of your requirements applicable to those sprints).

Milestones:

1. Compile and run ISEAGE 1.0 (ISEFlow)
2. Layer 2 and IPv4 network stack functionality is refactored into the kernel
3. Layer 2 and IPv4 network functionality has 10% lower latency than ISEAGE 1.0
4. IPv6 networking is fully functional in ISEAGE 2.0
5. Virtual IPs are fully functional in ISEAGE 2.0
6. Kosovo CDC has at least 5 vulnerable devices
7. Kosovo CDC has at least 4 vulnerabilities of various types per device

2.4 PROJECT TIMELINE/SCHEDULE

• A realistic, well-planned schedule is an essential component of every well-planned project

• Most scheduling errors occur as the result of either not properly identifying all of the necessary
activities (tasks and/or subtasks) or not properly estimating the amount of effort required to
correctly complete the activity

• A detailed schedule is needed as a part of the plan:

– Start with a Gantt chart showing the tasks (that you developed in 2.2) and associated subtasks
versus the proposed project calendar. The Gantt chart shall be referenced and summarized in the
text.

– Annotate the Gantt chart with when each project deliverable will be delivered

• Project schedule/Gantt chart can be adapted to Agile or Waterfall development model. For agile, a
sprint schedule with specific technical milestones/requirements/targets will work.

Gantt Chart

https://docs.google.com/spreadsheets/d/1FSsm8D_l9mMmGJyryjlCKoV9MdThMxHkp1tOJKV7is8/
edit?usp=sharing

Table 1. Gantt chart

2.5 RISKS AND RISK MANAGEMENT/MITIGATION

Consider for each task what risks exist (certain performance targets may not be met; certain tool
may not work as expected) and assign an educated guess of probability for that risk. For any risk
factor with a probability exceeding 0.5, develop a risk mitigation plan. Can you eliminate that task
and add another task or set of tasks that might cost more? Can you buy something off-the-shelf
from the market to achieve that functionality? Can you try an alternative tool, technology,
algorithm, or board?

Agile projects can associate risks and risk mitigation with each sprint.

Risks:

1. ISEAGE 2.0 will not be functioning for Kosovo CDC ~%66
a. Use ISAGE 1.0 and reduce boxes we create

2. Layer 2 communications cannot fully be moved to the kernel. ~35% chance
3. ISEAGE hardware unprepared for testing/CDC ~%4

https://docs.google.com/spreadsheets/d/1FSsm8D_l9mMmGJyryjlCKoV9MdThMxHkp1tOJKV7is8/edit#gid=0
https://docs.google.com/spreadsheets/d/1FSsm8D_l9mMmGJyryjlCKoV9MdThMxHkp1tOJKV7is8/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1FSsm8D_l9mMmGJyryjlCKoV9MdThMxHkp1tOJKV7is8/edit?usp=sharing

2.6 PERSONNEL EFFORT REQUIREMENTS

Include a detailed estimate in the form of a table accompanied by a textual reference and
explanation. This estimate shall be done on a task-by-task basis and should be the projected effort
in the total number of person-hours required to perform the task.

All numbers in hours

Task: Cameron Evan Jon Jacob Nicholas

Compile 2 5 2 2 10

Refactor &
understand
code

30 30 30 30 30

Move layer 2
to kernel

10 20 0 10 0

Add
configuration
functionality

10 0 10 7 0

IPv6
Functionality

5 10 5 5 25

Kosovo CDC 12 12 15 12 15

Table 2. Individuals Task Breakdown

Task Tens of hours to do total

manage client design
requirements 1

study the existing
source code 15

plan requirements 1

locally compile code 2

Project Definition and
Planning 2.3

build an environment on
ISEAGE 1.0 7

Implement new features 9

Move layer 2 to kernel 4

implement IPV6 5

Add configuration
functionality 2.7

Plan Scenario 1

Plan and document a
realistic CDC scenario .5

Plan and document the
scenario’s network 2

Design devices with
realistic OSes, network
stacks, protocols, and
applications 3

Implement designed
devices (OS Images) 2

Document all of the
changes to each device 1.5

Create scenario
document including
network diagrams,
detailed device info,
user info, and any other
important details 2

Implement
Vulnerabilities 5

Table 3. Task Time Breakdown

2.7 OTHER RESOURCE REQUIREMENTS

Identify the other resources aside from financial (such as parts and materials) required to complete
the project.

1. Hardware to system test ISEAGE 2.0 on
2. Additional hardware to run ISEAGE 2.0 on for the competition

3 Design

3.1 DESIGN CONTEXT

3.1.1 Broader Context

Describe the broader context in which your design problem is situated. What communities are you
designing for? What communities are affected by your design? What societal needs does your
project address?

List relevant considerations related to your project in each of the following areas:

Public health, safety, and welfare

How does your project affect the general well-being of various stakeholder groups? These groups
may be direct users or may be indirectly affected (e.g., solution is implemented in their
communities)

Increasing/reducing exposure to pollutants and other harmful substances, increasing/reducing
safety risks, increasing/reducing job opportunities

Global, cultural, and social

How well does your project reflect the values, practices, and aims of the cultural groups it affects?
Groups may include but are not limited to specific communities, nations, professions, workplaces,
and ethnic cultures.

Development or operation of the solution would violate a profession’s code of ethics,
implementation of the solution would require an undesired change in community practices

Environmental

What environmental impact might your project have? This can include indirect effects, such as
deforestation or unsustainable practices related to materials manufacture or procurement.

Increasing/decreasing energy usage from nonrenewable sources, increasing/decreasing
usage/production of non-recyclable materials

Economic

What economic impact might your project have? This can include the financial viability of your
product within your team or company, cost to consumers, or broader economic effects on
communities, markets, nations, and other groups.

Product needs to remain affordable for target users, product creates or diminishes opportunities for
economic advancement, high development cost creates risk for organization

● Public health/Safety/Welfare - For the universities, this project has to be able to replicate
meaningful cyber security scenarios to help educate the students in a manner that is both
engaging and challenging.

● Global/Cultural/Social -When designing our scenarios as well as implementing the ISEAGE
2.0 prototype, we have to consider the laws and culture of cyberspace that Kosovo may
have.

● Environmental - The biggest environmental impact that this project will have will be the
electricity used by the servers running the testbed and the general impact of the creation of
the servers used to run the system. To reduce these impacts, we will try to keep the
compute requirements of the system low to ensure that the testbed can be run on older
computers in order to reduce the manufacturing impacts or allow it to be run on modern
computers with relatively lower power consumption costs. Because we are giving the system
out to other universities and researchers, we have little control over the computers they run
it on or how the electricity is generated.

● Economic - Our project is a free to use research product so there are few economic
concerns that we need to deal with. Ideally this project will allow people to learn cyber
security for a reduced price at other universities because they will be able to host their own
test bed environment rather than pay for some other system.

3.1.2 User Needs

List each of your user groups. For each user group, list a needs statement in the form of:

User group needs (a way t0) do something (i.e., a task to accomplish, a practice to implement, a way
to be) because some insight or detail about the user group.

There are 3 main groups of users we are designing this for:

CDC Events

● Needs to be able to deploy large number of replicated machines with different IP addresses
to each of the competitor teams in order to run the competitions

● Must be able to easily connect external computer to the system to allow red teamers to
bring their own hardware to the competitions

● Easy monitoring of the traffic in order to insure rules of the competition are being followed
and to allow research on the attacks to be conducted

Classrooms

● In the classroom we need to be able to easily configure and manage the routing
configuration of ISEFlow

● In the classroom we need an Advanced way to monitor clients and traffic to view things
such as ARP tables.

● A system for spoofing normal internet traffic and attacks such as a distributed denial of
service.

Researchers

● Easy to add and remove machines and reconfigure the network architecture in order to
allow rapid changes to experiments and research

● In depth logging to provide real world data from the experiments.
● Easily transferable configuration files to allow others to replicate the experiments.

3.1.3 Prior Work/Solutions

Include relevant background/literature review for the project

– If similar products exist in the market, describe what has already been done

– If you are following previous work, cite that and discuss the advantages/shortcomings

– Note that while you are not expected to “compete” with other existing products / research groups,
you should be able to differentiate your project from what is available. Thus, provide a list of pros
and cons of your target solution compared to all other related products/systems.

Detail any similar products or research done on this topic previously. Please cite your sources and
include them in your references. All figures must be captioned and referenced in your text.

ISEAGE 2.0 is the improved version of ISEAGE 1.0. ISEAGE 1.0 is extremely outdated (more than 15
years old) and thus a modernized ISEAGE 2.0 needs to be completed to supersede it and bring the
ISEAGE project up to date. Our team was given a baseline ISEAGE 2.0 system that was designed and
implemented by a graduate student a few years ago. However, this baseline (or ‘original’) ISEAGE
2.0 system is very incomplete and poorly documented. This original code was never formally tested
and there is no documentation for how to run it. There are many features that are not fully
implemented and our team was supplied with a long list of “notes” regarding which features were
functional, tested at all, or not implemented.

After diving into the ‘original’ ISEAGE 2.0 code, we found a number of discrepancies between the
architectural diagrams for the code and the actual implementation. We also found it nearly
impossible to actually compile and run the code on any FreeBSD system it was designed for, let
alone any newer systems. As a result, our team opted to redesign the entire ISEAGE 2.0 system
using some approaches utilized in the old code and some entirely new ones that will allow us to
make the system meet all of the requirements. These improvements are broad and are detailed
further in design section.

3.1.4 Technical Complexity

Provide evidence that your project is of sufficient technical complexity. Use the following metric or
argue for one of your own. Justify your statements (e.g., list the components/subsystems and
describe the applicable scientific, mathematical, or engineering principles)

The design consists of multiple components/subsystems that each utilize distinct scientific,
mathematical, or engineering principles –AND–

The problem scope contains multiple challenging requirements that match or exceed current
solutions or industry standards.

This project clearly consists of multiple complex subsystems in both the code and the different
machines that interact with each other to run the testbed environment. There are 5 different
subsystems in the code involving tools, packets, control, comm, and admin. Each of these
subsystems must follow software engineering design principles for construction and modularity of
code. In particular the packet subsystems must exactly match the RFC standards for IPv4 & IPv6
packets. We will also need to be able to handle ethernet frame packets according to the RFC
standards.

Implementing the new IPv6 and control UX will be massive improvements on the current
system and be significantly challenging to implement. The new IPv6 has significantly different
packet formats which will need to be implemented from scratch. The current code must also be
refactored to run on modern dependencies, operating systems and in accordance with modern
standards. This should all be a significant challenge.

3.2 DESIGN EXPLORATION

3.2.1 Design Decisions

List key design decisions (at least three) that you have made or will need to make in relation to your
proposed solution. These can include, but are not limited to, materials, subsystems, physical
components, sensors/chips/devices, physical layout, features, etc.

Four major design decisions we still need to make are the following:

1. How to properly move the network stack down to the operating system level.
2. How to implement a better way to configure ip tables.
3. How to implement IP spoofing for simulating DDOS attacks
4. How to better monitor the traffic traversing ISEFlow.

3.2.2 Ideation

For one design decision, describe how you ideated or identified potential options (e.g., lotus
blossom technique). List at least five options that you considered

To give an idea of our design process here is an example of how we worked through one decision.

To properly implement moving the network stack down to the operating system, we have the
following five ideas:

1. We could alter the existing code’s TCP dump algorithm.
2. We could move IPv4 & IPv6 down to the operating system level and not implement IPv6.
3. We could implement a new IPv6 implementation of our own into the code.
4. We could find an existing, proprietary solution to move IPv6 down.
5. We could implement both IPv4 and IPv6 into a new solution to be built into the code.

3.2.3 Decision-Making and Trade-Off

Demonstrate the process you used to identify the pros and cons or trade-offs between each of your
ideated options. You may wish you include a weighted decision matrix or other relevant tool.
Describe the option you chose and why you chose it.

We chose to examine the pros and cons by measuring how close we could get the implementation
to our client’s standards vs how realistic those implementations are. We’ve based these off both our
skills as programmers and the needs of our clients. Going off of our 5 ideations, implementing both
IPv4 and IPv6 into the newly built code would be able to satisfy our clients needs as well as
challenging us as a group, since past students failed to do this in past assignments.

3.3 PROPOSED DESIGN

Discuss what you have done so far – what have you tried/implemented/tested?

As of now, we have a reimplementation of the libdispatch dependency using pthreads to allow the
code to run on modern systems. We have also made significant improvements and reductions to the
code to remove dead code and improve readability. We have also acquired a set of servers to provide
a testing environment for our code changes and are ready to begin the full implementation next
semester.

3.3.1 Design Visual and Description

Include a visual depiction of your current design. Different visual types may be relevant to different
types of projects. You may include: a block diagram of individual components or subsystems and
their interconnections, a circuit diagram, a sketch of physical components and their operation, etc.

Describe your current design, referencing the visual. This design description should be in sufficient
detail that another team of engineers can look through it and implement it.

At ISEAGE’s core there is a layer 2 virtual switch which connects a number of “flow’s” to the
network. This Is where theISEflow code Runs. These devices, virtual machines in our case act as
routers giving us a layer 3 network to play with. These routers should be highly configurable
supporting virtual IP’s and acting as default gateways for up to 15 class c networks on the inside
interface of the router. (depicted in blue above). This network can connect to the internet through
Keyhole 1 and keyhole2 using HTTP, HTTPS, and FTP.

3.3.2 Functionality

Describe how your design is intended to operate in its user and/or real-world context. This
description can be supplemented by a visual, such as a timeline, storyboard, or sketch.

How well does the current design satisfy functional and non-functional requirements?

Our implementation is intended to be used in the Kosovo Cyber-Defense competition. It will be
interacted with by competitors in the competition and by systems engineers configuring ISEAGE.
Currently, ISEAGE 1.0 is functional enough to be used in competitions. Our goal is to bring ISEAGE
1.0 into the future on an updated operating system, refactor some functionality to the operating
system, and add support for IPV6.

3.3.3 Areas of Concern and Development

Based on your current design, what are your primary concerns for delivering a product/system that
addresses requirements and meets user and client needs?

What are your immediate plans for developing the solution to address those concerns? What
questions do you have for clients, TAs, and faculty advisers?

Our primary concern is the IPv6 implementation. IPv6 is a vital component that will be required for
ISEAGE 2.0, but we are unsure on how to properly implement it. Our immediate plans are to study
IPv6 and learn more about its implementation and to study the code for its implementation of IPv4.
For our clients,, we are planning to ask about implementing our own solution for both IPv4 and
IPv6.

3.4 TECHNOLOGY CONSIDERATIONS

Highlight the strengths, weakness, and trade-offs made in technology available.

All code we’ve received and will develop runs on UNIX, specifically FreeBSD. For that reason, we’ve
run into issues with the age of the code and the operating system the code runs on. In particular,
we’ve run into issues with certain libraries and had to completely replace them. On one hand,
FreeBSD is a widely supported operating system which works well for the project. On the other
hand, we don’t know what libraries will be out of date in the future.

Discuss possible solutions and design alternatives

For now, we can use very standard libraries, such as pthreads, to mitigate this issue. A possible
design alternative is to use a linux distribution instead. In general, linux is a more modern type of
operating system and is likely to be supported for many years to come. However, distributions of
UNIX like FreeBSD are popular enough that we don’t believe they will be going anywhere anytime
soon.

3.5 DESIGN ANALYSIS

– Did your proposed design from 3.3 work? Why or why not?

As of now we have not been able to have the full implementation of our project run since the old
codebase still had issues when we got it and took us longer than expected to make the changes
necessary for it to be run on modern systems.

– What are your observations, thoughts, and ideas to modify or iterate over the design?

We had originally planned to implement IPv6 in a similar way to how IPv4 was
implemented. However as we read through the code we decided that using a series of modules to

handle the packets would be the way to go. We feel like this will allow easier additions to the
application in future

3.6 DESIGN PLAN

Describe a design plan with respect to use-cases within the context of requirements, modules in
your design (dependency/concurrency of modules through a module diagram, interfaces,
architectural overview), module constraints tied to requirements.

Please see section 5 for the complete design plan followed by implementation details.

4 Testing
Testing is an extremely important component of most projects, whether it involves a circuit, a
process, power system, or software.

The testing plan should connect the requirements and the design to the adopting test strategy and
instruments. In this overarching introduction, given an overview of the testing strategy. Emphasize
any unique challenges to testing for your system/design.

4.1 UNIT TESTING

What units are being tested? How? Tools?

We will be testing several methods and functions over time to ensure they are not only able to
compile, but able to function separately and without difficulty. These methods will include but not
be limited to; isemaker config files, dataqueue.c, ifconfig.c and ip.c.

What we will be doing to test these code pieces is to isolate them from the rest of the codebase as
best we can, reveal dependencies of certain functions, create test cases to test functionality and bug
testing.

Tools that could be used to test these code pieces can be NUnit, CuTest, CUnit, AceUnit, and
autounit.

4.2 INTERFACE TESTING

What are the interfaces in your design? Discuss how the composition of two or more units
(interfaces) are being tested. Tools?

ISEAGE has two major interfaces, the inside interface used to communicate from board to
board and an outside interface used to house subnets. Based on our current understanding of the
codebase, the code used to handle these interfaces primarily resides in our ‘comm’ folder. To test
these interfaces, we could use both a unit testing application, such as CUnit, to check its
functionality. Two examples of such unit tests could be checking that a packet sent from one board
is received by another and we could test that passthrough works by sending in a packet and
checking that the output is exactly the same as the input.

4.3 INTEGRATION TESTING

What are the critical integration paths in your design? Justification for criticality may come from
your requirements. How will they be tested? Tools?

Our most critical integration path has to be the queue used to process packets. It is the portion of
ISEAGE that handles ISEAGE’s primary purpose, to be an internet testbed for cyber security. To test
our queue, we will make unit tests that check if all queues are being read from properly, that
packets from the queue are being routed where they need to go, and that each queue is receiving
the proper information associated with it.

4.4 SYSTEM TESTING

Describe system level testing strategy. What set of unit tests, interface tests, and integration tests
suffice for system level testing? This should be closely tied to the requirements. Tools?

Our system level components are components that are now being handled by the operating system
instead of our code. Some of our network stack will eventually be moved down to the operating
system level. When this happens, we will test for functionality by using unit tests where the output
from the OS to the rest of the system would be received. We would be checking against our
expected values from the current system. Performing these tests would demonstrate our handler’s
functionality as well as its limitations. In short, we would be testing both the internal and external
interfaces as well as the components in-between and the operating system’s handling of the
network stack.

4.5 REGRESSION TESTING

How are you ensuring that any new additions do not break the old functionality? What
implemented critical features do you need to ensure do not break? Is it driven by requirements?
Tools?

By implementing past test cases for the new additions, we can ensure that the changes made do not
affect the functionality of the project. We need to ensure that the IPv6 implementation does not
crash or cause breaks within the software so it can at least run properly or at all.

Though there aren’t any specific applications to do these tests, there are two strategies we can
follow in Agile in order to keep track of progress made. Sprint Level Regression can be done when
every new function is added, a new test case can be taken from the test suite and test this
functionality. End-to-End testing includes all test cases at once and tests the complete product.

4.6 ACCEPTANCE TESTING

How will you demonstrate that the design requirements, both functional and non-functional are
being met? How would you involve your client in the acceptance testing?

We will show them the tests we ran for IPv6 that prove it’s functional within ISEAGE.

We will most likely involve our clients by running through a virtual scenario that can test our
project's requirements fully. The biggest test that will be taking place is the Kosovo CDC. This will
be a full test of the entire system to make sure every part of it is fully functional and can stand up to
the stress of a competition. Ideally this will also test all of the edge cases and provide any bugs that
will need to be fixed in future versions that were not found in our unit testing.

4.7 SECURITY TESTING (IF APPLICABLE)

If we are able to get dedicated servers set up for the testing and running of this code, a fuzzing
application should be implemented to find any security issues or general crashes that are in the
code that we missed in source code reviews.

4.8 RESULTS

What are the results of your testing? How do they ensure compliance with the requirements?
Include figures and tables to explain your testing process better. A summary narrative concluding
that your design is as intended is useful.

The results of our testing should be a text output from our unit tests that will show what, if any, of
our tests failed. This will allow us to isolate bugs and fix them. Once unit testing has revealed no
new bugs, we will put the system into our fuzzing framework, assuming we have servers. The
fuzzing will reveal the minimum input required to crash the program. This will allow us to find
more edge case bugs that we will be able to fix and create more unit tests for. After all of this, the
system should ideally not have any more bugs and will be ready for the Kosovo CDC. However, if
there are more bugs the CDC should provide a real life use case that should reveal them.

5 Implementation
Describe any (preliminary) implementation plan for the next semester for your proposed design in
3.3. If your project has inseparable activities between design and implementation, you can list them
either in the Design section or this section.

Our work on iseage can be split into 2 broad categories. First we are refactoring the existing code
base by updating out of date dependencies such as libdispatch, improving code reusability, and
removing dead code. This changes very little of the structure of the overarching code base and is
happening as we read through and implement the other requirements and is relatively self
explanatory therefore we won’t go into significant detail about its implementation.

The second and significantly more consequential change we are implementing is the original plan
of having a series of modules that each packet would travel through that was not implemented.

The flow of the packets through ISEFlow is as follows. First they enter through the
computers WAN interfaces and are captured by the program. Once captured, they are dropped onto
the internal ethernet capture queue. Once they reach the front of the queue, a thread picks up the
packet and checks it against any modules in the ethernet model list. If any of the modules matches
to the packet, it modifies the packet and continues to be checked by the other modules.

One of 3 things will result from these modules.

1. A module will complete everything needed for the packet, create a response and
send that to the outbound queue.

2. A module will see that it needs to be routed to some other queue within the
system. For example, if it is an IP packet that needs to be routed it will be sent to
the layer 3 queue.

3. No module will match to the packet and it will be dropped.

If the packet is sent to the layer 3 queue, a similar thing will happen where the packet will
be filtered through all of the layer 3 modules which will modify the packet appropriately. Which will
result in the packet being sent through the layer 3 queue multiple times until it is routed out of the
system to the correct destination or the TTL reaches 0 and the packet is dropped

This will allow easy additions of modules which is how we will add the IPv6 support and
other requirements.

5.1 IMPLEMENTATION NOTES

5.1.1 Thread Pool

To implement a thread pool, we’ve created two classes: a semaphore class and a thread pool class.
Our thread pool is a self contained system that can add jobs, and be permanently shut down. Jobs
are run through a “consumer loop”. This container loop is used to check when a job is in the queue
and perform the top job.

5.1.2 Queue

We plan to replace the current data queue system with a newer version implemented using C++.
Currently, there is a data queue with a head and tail attribute. This data queue is used to handle
packet throughput from one board to another. We plan a similar implementation as an object with
head and tail attributes.

5.1.2 IPV6

We plan to add support for IPV6 into the codebase after it has been refactored because we will have
a good understanding of the code at this point and we should be able to add an IPV6 module to
handle packets identified by this new version.

6 Professionalism
This discussion is with respect to the paper titled “ Contextualizing Professionalism in Capstone
Projects Using the IDEALS Professional Responsibility Assessment”, International Journal of
Engineering Education Vol. 28, No. 2, pp. 416–424, 2012

6.1 AREAS OF RESPONSIBILITY

Pick one of IEEE, ACM, or SE code of ethics. Add a column to Table 1 from the paper corresponding
to the society-specific code of ethics selected above. State how it addresses each of the areas of
seven professional responsibilities in the table. Briefly describe each entry added to the table in
your own words. How does the IEEE, ACM, or SE code of ethics differ from the NSPE version for
each area?

For this project, we have decided on the ACM code of ethics.

Work Competence: Work should only be performed in areas of competence. Lack of expertise must
be disclosed to the employer. Must maintain excellence through upgrading technical knowledge.

Financial Responsibility: Do not engage in deceptive financial practices such as bribery or other
malpractices.

Communication Honesty: Be honest of qualifications and expertise, be forthright of circumstances
that may lead to conflicts that could undermine success.

Health & Wellbeing: Leadership should consider the physical safety and psychological well-being of
all workers.

Property Ownership: Avoid harm of one's property, whether it be physical or data. Professionals
should follow best ethical practices with good reason unless told otherwise.

Sustainability: Professionals should promote environmental sustainability both locally and globally.

Social Responsibility: Procedures and attitudes should be towards the quality and welfare of society,
reducing harm to the public, serving public interest and fulfilling social responsibilities.

6.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

For each of the professional responsibility area in Table 1, discuss whether it applies in your project’s
professional context. Why yes or why not? How well is your team performing (High, Medium, Low,
N/A) in each of the seven areas of professional responsibility, again in the context of your project.
Justify.

Work Competence: We have only been performing work that we are confident in our expertise
in. On the few occasions we have had doubts about our abilities we have discussed our problems
with the clients to ensure they understand where the project is and so that we do not mislead them.

Financial Responsibility: This is a research project that will not be charged for which
certainly puts us in the High category for this project.

Communication Honesty: We have maintained open communication and honest
communication with our clients about roadblocks and challenges which puts us at a High.

Health & Wellbeing: There are no major or unusual health risks associated with this
project. All work is done virtually and in an isolated environment so no harm should come of this
project besides the carpal tunnel and other common maladies common to excessive computer work
which are outside of our ability to prevent. This means that this section is not applicable for us.

Property Ownership: All of the code has been written by current and former ISU
employees and students without a clear statement of what license this is operating under. Because
all code written by students is owned by those students, proper legal distribution of this code base
may require the permission of every author. Currently this probably puts the project on the Low end
and we need to find an appropriate License to operate under.

Sustainability: This project requires relatively few compute resources and can
easily be run on older hardware allowing old systems to be reused. However, this does not decrease
the impact of other projects so that would put us at a Medium.

Social Responsibility: This project will be a learning tool to help new people and
researchers in the field. Allowing more people into the field will have a massive benefit to society as
a whole because there is a massive need for more cyber security professionals which clearly places
us at a High in this category.

6.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

For our project, our team believes the most significant area of professional responsibility is social
responsibility. It is paramount that we report only the truth to our clients to both keep them
informed and to make sure the future of ISEAGE is well documented. We believe that we’ve
followed this well with regular updates, meetings, and voicing our concerns directly to our clients.

7 Closing Material

7.1 DISCUSSION

Discuss the main results of your project – for a product discuss if the requirements are met, for
experiments oriented project – what are the results of the experiment, if you were validating a
hypothesis – did it work?

This project will update ISEAGE to run on modern systems and fully implement the
module system into the program to allow for easy expansion. This will allow more classes,
competitions, and researchers to make use of the system. Ideally this will result in a better
understanding of cyber attacks and more cyber security professional.

7.2 CONCLUSION

Summarize the work you have done so far. Briefly reiterate your goals. Then, reiterate the best plan
of action (or solution) to achieving your goals. What constrained you from achieving these goals (if
something did)? What could be done differently in a future design/implementation iteration to
achieve these goals?

The vast majority of the work so far has been understanding how the old code runs and
interacts with itself and determining the best way to implement new functionality. We have been
able to update the code as we read through it to remove unused code and improve readability. We
have also reimplemented the libdispatch dependency to use pthreads now because libdispatch has
been obsolete for more than a year.

We still need to restructure the code to contain modules and then implement the IPv6 and
layer 2 modules. This will be created by sending each packet through a list of ethernet modules and
layer 3 repeatedly until it is routed out to an external computer or it’s TTL goes to zero. Once this is
complete we will need to create several CDC boxes to allow us to provide a live fire test for the
product.

Our current largest challenges the way packets are captured. All packets still reach the
operating system which means our current implementation will not be able to prevent the OS from
responding to the layer 2 packets or alter them before they reach the OS.

Our other problem is that the current format of the packets held in the code does not
contain any layer 2 information. This will be needed to detect where in our fake routers the packet

is. It will also be difficult to add this as the mk_map command compiles the configuration file down
to raw binary objects to be used in the program so changing anything may break the configuration
setup.

Next semester we will continue to update the code and (re)implement the needed functionality for
IPv6.

7.3 REFERENCES

List technical references and related work / market survey references. Do professional citation style
(ex. IEEE).

[1]
“Internet-Scale Event and Attack Generation Environment • Electrical and Computer
Engineering • Iowa State University,” Iastate.edu, 2018.
https://www.ece.iastate.edu/research/centers-institutes-and-laboratories/internet-scale-eve
nt-and-attack-generation-environment/.
[2]
Iowa State University, ISEAGE Testbed Overview. Iowa State University, 2012.
[3]
Iowa State University, ISEAGE Design, installation, and configuration document, vol. 1.
Iowa State University, 2012.
[4]
A. Shiranzaei and R. Z. Khan, “Internet protocol versions — A review,” in 2015 2nd
International Conference on Computing for Sustainable Global Development
(INDIACom), pp. 397–401.
[5]
J. May, “Upgrades to ISEFlow: Offloading ARP and supporting IPv6,” Pdf, Iowa State
University, 2019.

7.4 APPENDICES

Any additional information that would be helpful to the evaluation of your design document.

If you have any large graphs, tables, or similar data that does not directly pertain to the problem but
helps support it, include it here. This would also be a good area to include hardware/software
manuals used. May include CAD files, circuit schematics, layout etc,. PCB testing issues etc.,
Software bugs etc.

7.4.1 Team Contract

Team Members:

1) Jacob Morrow_______________________________ 2) _Evan
Hellman______________________________

3) _Jonathon Schnell______________________________ 4) _Cameron
Isbell______________________________

5) _Nicholas Krabbenhoft______________________________ 6) _______________________________

7) _______________________________ 8) _______________________________

Team Procedures

Day, time, and location (face-to-face or virtual) for regular team meetings:

Regular team meetings are expected to take place over Discord on Wednesdays at 3:30pm.

2. Preferred method of communication updates, reminders, issues, and scheduling (e.g., e-

mail, phone, app, face-to-face):

Discord will be used for updates between team members and email will be used to communicate
with the instructor.

3. Decision-making policy (e.g., consensus, majority vote):

While it depends on the decision, most decisions will likely be made by consensus. If no consensus
is possible we will use a majority vote.

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be

shared/archived):

Meeting minutes and other records will be stored in discord in their own channel.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:

All individuals are expected to attend meetings unless prior notification otherwise or extenuating
circumstances arise.

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

Each assignment should be completed by the due date. All team members should contribute in
some way to each assignment. Responsibility for a failure to meet deadlines rests with all team
members.

3. Expected level of communication with other team members:

Team members are expected to voice any concerns they have, whether it is about scheduling, the
project, etc. over discord or email to other group members. Each member should check the discord
daily for updates.

4. Expected level of commitment to team decisions and tasks:

Team members should commit to team consensus to complete project goals. If a task is unclear,
team members should contact all other members to clear confusion.

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction,

individual component design, testing, etc.):

a. Project owner: Jon
i. Manages client interaction and design requirement changes, main point of

contact for client interactions.
b. Project manager: Evan

i. Manages team resources a scheduling
ii. Makes big picture decisions about the direction of project

iii. Manage a product backlog to ensure a steady and manageable flow of work
c. Scrum master: Jacob

i. Manages the development process
ii. Does anything required to ensure the team can work efficiently

d. Lead Software Engineer: Cameron
i. Main point of contact for codebase

ii. Manages design requirements and code structure
e. Lead Systems engineer: Nicholas

i. Manages systems development
ii. Maintain systems and deploys code or CICD

2. Strategies for supporting and guiding the work of all team members:

To support and guide our team members, we plan to hold regular team meetings, to use the discord
to communicate regularly with each other, and to divide work among team members according to
each’s expertise.

3. Strategies for recognizing the contributions of all team members:

By using discord and git’s contributions tab, we will be able to measure each team member's
contribution.

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the

team.

a. Cameron:
i. Skills: Most of my programming experience is in C/C++. I also

know Java, Python, C#, and vhdl. I have some driver programming
experience from CPRE 480.

ii. Expertise: Programming.
iii. Perspective: As a computer engineering student, I am best suited at

looking at the lower level code and developing on that.
b. Jon

i. Skills: networking, network security, linux, python, C, and java
programming, ESXI, virtualization.

ii. expertise: virtualization and networking
iii. perspective: Security centered, thinking about security not just as a

career but also a hobby. I am a TA for 230/231 so I find educating
people about security enjoyable. Run an ESXI homelab in
freetime.

c. Nicholas
i. Skills: Strong skills in networking, C, Linux, and python. I also

have experience in virtualization and running small lab
environments.

ii. expertise : Low level embedded code and networking.
iii. Perspective: I bring a embedded and low level security perspective

to the
d. Evan

i. Skills: Strong background in development especially in Agile
environments. Experience programming in C and a variety of other
languages. Experience working with Windows and Linux-based
machines as well as their network configurations. Knowledge of
computer networking and network security.

ii. Expertise: Development techniques, software architecture,
high-level design, software implementation

iii. Perspective: As a software engineer who has industry experience
in development, I have knowledge of how the industry streamlines
the design and implementation of software systems. I also have
experience managing software development projects and bring a
more high-level understanding of the entire process.

e. Jacob
i. Skills: C programming, Java programming, very basic python

programming, basic Linux programming
ii. Expertise: Basic language programming.

iii. Perspective: I like to poke through old security software and test
their limits in some of my off time. I picked security because I felt I'd be
able to help more people this way.

2. Strategies for encouraging and support contributions and ideas from all team members:

● Use happy reaction emotes and positive reinforcements in discord when
someone posts about a milestone or creative idea.

● Promoting idea sharing and creativity in our regular scrum meetings.
3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will

a team member inform the team that the team environment is obstructing their

opportunity or ability to contribute?)

● Reach out to fellow team members if they are becoming frustrated or
distant from the group.

● Maintain mutual respect for fellow team members and an open floor
where everyone can share their ideas and other team members.

Goal-Setting, Planning, and Execution

1. Team goals for this semester:

Complete the client requirements by April of 2022.
2. Strategies for planning and assigning individual and team work:

Clickup will be used to create, assign, and manage Scrum stories. This will allow us to accurately
assign and track work as it is being done and allow individual developers to focus on development
rather than planning and other overhead.

3. Strategies for keeping on task:

Weekly Scrum meetings will ensure members are held accountable for the tasks they agreed to
work on for each sprint as well as provide a forum for discussion or modification of stories as
conditions change. This will help the team react to change effectively and keep us on task.

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?

We plan to first talk directly with the team member and to notify the TA.

2. What will your team do if the infractions continue?

The instructor will be notified and removal may have to be implemented.

a) I participated in formulating the standards, roles, and procedures as stated in this contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) _Jacob Morrow__ DATE
_12/05/2021_________________

2) ___Nicholas Krabbenhoft__ DATE
_12/05/2021_________________

3) __Evan Hellman___ DATE
_12/05/2021_________________

4) __Cameron Isbell___ DATE
_12/05/2021_________________

5) __Jonathon Schnell___ DATE
_12/05/2021_________________

6) ___ DATE __________________

7) ___ DATE __________________

8) ___ DATE __________________

